A Hidden Markov Model of Default Interaction
نویسندگان
چکیده
The occurrence of defaults within a bond portfolio is modeled as a simple hidden Markov process. The hidden variable represents the risk state, which is assumed to be common to all bonds within one particular sector and region. After describing the model and recalling the basic properties of hidden Markov chains, we show how to apply the model to a simulated sequence of default events. Finally, we consider a real scenario, with default events taken from a large database provided by Standard & Poor’s. We are able to obtain estimates for the model parameters, and also to reconstruct the most likely sequence of the risk state.
منابع مشابه
MAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL
Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...
متن کاملIntroducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کاملModeling Global Risk via a Hidden Markov Model of Multiple Sequences
Default risk in commercial lending is one of the major concerns of the creditors. In this article, we introduce a new Hidden Markov Model with multiple observable sequences (MHMM), assuming that all the observable sequences are driven by a common hidden sequence, and utilize it to analyze default data in a network of sectors. Efficient estimation method is then adopted to estimate the model par...
متن کاملIntrusion Detection Using Evolutionary Hidden Markov Model
Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training, ...
متن کاملA generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between sequences
The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the fact that sequences appearing in the final MSA are written based on th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003